BELL WORK

Come up with 3 formulas from previous math classes. Then state what each variable represents.

\[a^2 + b^2 = c^2 \]

\[V = l \cdot w \cdot h \]

\[A = lw \]

Practice Answers

Lesson practice pg. 27: 15-21

21. a. \(3x + 6 = 3x + 7\); Subtract 3x from both sides: \(6 = 7\). The statement \(6 = 7\) is false, so the original equation has no solutions.
b. \(3x + 6 = 3x + 6\); Subtract 3x from both sides: \(6 = 6\). The statement \(6 = 6\) is true for any value of the variable, so the original equation has infinitely many solutions.
LESSON 2-4 PRACTICE
Solve each equation. If an equation has no solutions or if an equation has infinitely many solutions, explain how you know.
15. \(3x - x - 5 = 2(x + 2) - 9\)
16. \(7x - 3x + 7 = 3(x - 4) + 20\)
17. \(-2(x - 2) - 4x = 3(x + 1) - 9x\)
18. \(5(x + 2) - 3 = 3x - 8x + 7\)
19. \(4(x + 3) - 4 = 8x + 10 - 4x\)
20. \(3(x + 2) + 4x - 5 = 7(x + 1) - 6\)
21. Construct viable arguments. Justify your response for each of the following.
 a. Write an equation with no solutions that has the expression \(3x + 6\) on the left side of the equal sign. Demonstrate that your equation has no solutions.
 b. Write an equation with infinitely many solutions that has the expression \(3x + 6\) on the left side of the equal sign. Demonstrate that your equation has infinitely many solutions.

Activity 2
Solving literal equations for a variable
Lesson 2-5

Learning Targets:
• Solve literal equations for specified variables.
• Use a formula that has been solved for a specified variable to determine an unknown quantity.

- Whiteboard Problem
A literal equation has more than one variable, and the equation can be solved for a specific variable. Formulas are examples of literal equations. A formula is an equation written using symbols that describes the relationship between different quantities.

A formula describes how two or more quantities are related. Formulas are important in many disciplines: geometry, physics, economics, sports, and medicine are just a few examples of fields in which formulas are widely used. A formula is an example of a literal equation. A literal equation contains more than one variable. Literal equations and formulas can be solved for a specific variable using the same procedures as equations containing one variable.

Example A
Solve the equation $4x + b = 12$ for x.

\[
4x + b = 12 \quad \text{solve for } x
\]

\[
4x = 12 - b
\]

\[
\frac{4x}{4} = \frac{12 - b}{4}
\]

\[
x = \frac{3 - \frac{b}{4}}{}
\]

Try These A
Solve each equation for x.

a. $ax + 7 = 3$

\[
ax = -4
\]

\[
x = \frac{-4}{a}
\]

c. $-3x + d = -9$

Work with Partner.
Check Your Understanding

1. Is the equation $2x + 4 = 5x - 6$ a literal equation? Explain.
2. Describe the similarities and differences between solving an equation containing one variable and solving a literal equation for a variable.

Discussion groups

Example B

The equation $v = v_0 + at$ gives the velocity in meters per second of an object after t seconds, where v_0 is the object's initial velocity in meters per second and a is its acceleration in meters per second squared.

a. Solve the equation for a.

b. Determine the acceleration for an object whose velocity after 15 seconds is 25 meters per second and whose initial velocity was 15 meters per second.

\[a = \frac{v - v_0}{t} \]

\[t = 15; \ v = 25; \ v_0 = 15 \]

\[a = \frac{25 - 15}{15} \]

\[a = \frac{2}{3} \text{ m/s}^2 \]
Work with Partner.

Try These B
The equation \(t = 13p + 108 \) can be used to estimate the cooking time \(t \) in minutes for a stuffed turkey that weighs \(p \) pounds. Solve the equation for \(p \). Then find the weight of a turkey that requires 285 minutes to cook.

\[
\begin{align*}
\text{Solve for } P: & \quad t = 13p + 108 \\
-108 & \quad -108 \\
\frac{t - 108}{13} & = p \\
\frac{285 - 108}{13} & = 13.6116 \\
p & = \frac{177}{13}
\end{align*}
\]

3. Reason abstractly. Solve for the indicated variable in each formula.

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Solve for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>(d = rt), where (d) is the distance an object travels, (r) is the average rate of speed, and (t) is the time traveled</td>
<td>(r)</td>
</tr>
<tr>
<td>Pressure</td>
<td>(p = \frac{F}{A}), where (p) is the pressure on a surface, (F) is the force applied, and (A) is the area of the surface</td>
<td>(F)</td>
</tr>
<tr>
<td>Kinetic energy</td>
<td>(k = \frac{1}{2}mv^2), where (k) is the kinetic energy of an object, (m) is its mass, and (v) is its velocity</td>
<td>(m)</td>
</tr>
<tr>
<td>Gravitational energy</td>
<td>(U = mgh), where (U) is the gravitational energy of an object, (m) is its mass, (g) is the acceleration due to gravity, and (h) is the object's height</td>
<td>(h)</td>
</tr>
<tr>
<td>Boyle's Law</td>
<td>(p_1V_1 = p_2V_2), where (p_1) and (V_1) are the initial pressure and volume of a gas and (p_2) and (V_2) are the final pressure and volume of the gas when the temperature is kept constant</td>
<td>(V_2)</td>
</tr>
</tbody>
</table>

Chunk: draw a line after #3

T-P-S: do work on notes page.
EXIT SLIP

DO NOT need to write the problem only # and answer.

Check Your Understanding

4. Solve the equation \(w + i = \frac{5}{c} \) for \(c \).
5. Why do you think being able to solve a literal equation for a variable would be useful in certain situations?

Homework:
- Lesson 2-5 practice
pg. 30: 6-10